Inferring the incidence of industry inefficiency from DEA estimates
Daniel Friesner,
Ron Mittelhammer () and
Robert Rosenman
European Journal of Operational Research, 2013, vol. 224, issue 2, 414-424
Abstract:
Data envelopment analysis (DEA) is among the most popular empirical tools for measuring cost and productive efficiency within an industry. Because DEA is a linear programming technique, establishing formal statistical properties for outcomes is difficult. We model the incidence of inefficiency within a population of decision making units (DMUs) as a latent variable, with DEA outcomes providing only noisy and generally inaccurate sample-based categorizations of inefficiency. We then use a Bayesian approach to infer an appropriate posterior distribution for the incidence of inefficiency within an industry based on a random sample of DEA outcomes and a prior distribution on that incidence. The approach applies to the empirically relevant case of a finite number of firms, and to sampling DMUs without replacement. It also accounts for potential mismeasurement in the DEA characterization of inefficiency within a coherent Bayesian approach to the problem. Using three different types of specialty physician practices, we provide an empirical illustration demonstrating that this approach provides appropriately adjusted inferences regarding the incidence of inefficiency within an industry.
Keywords: Data envelopment analysis; Applied probability; Bayesian inference (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221712006030
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:224:y:2013:i:2:p:414-424
DOI: 10.1016/j.ejor.2012.08.003
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().