EconPapers    
Economics at your fingertips  
 

Steady-state optimization of biochemical systems through geometric programming

Gongxian Xu

European Journal of Operational Research, 2013, vol. 225, issue 1, 12-20

Abstract: This paper presents an iterative strategy to address the steady-state optimization of biochemical systems. In the method we take advantage of a special class of nonlinear kinetic models known as Generalized Mass Action (GMA) models. These systems are interesting in that they allow direct merging of stoichiometric and S-system models. In most cases nonconvex steady-state optimization problems with GMA models cannot be transformed into tractable convex formulations, but an iterative strategy can be used to compute the optimal solution by solving a series of geometric programming. The presented framework is applied to several case studies and shown to the tractability and effectiveness of the method. The simulation is also studied to investigate the convergence properties of the algorithm and to give a performance comparison of our proposed and other approaches.

Keywords: OR in biology; Optimization; Geometric programming; Generalized mass action; Biochemical systems (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S037722171200567X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:225:y:2013:i:1:p:12-20

DOI: 10.1016/j.ejor.2012.07.026

Access Statistics for this article

European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati

More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:ejores:v:225:y:2013:i:1:p:12-20