Structural properties of Markov modulated revenue management problems
Can Özkan,
Fikri Karaesmen and
Süleyman Özekici
European Journal of Operational Research, 2013, vol. 225, issue 2, 324-331
Abstract:
The admission decision is one of the fundamental categories of demand-management decisions. In the dynamic model of the single-resource capacity control problem, the distribution of demand does not explicitly depend on external conditions. However, in reality, demand may depend on the current external environment which represents the prevailing economic, financial, social or other factors that affect customer behavior. We formulate a Markov Decision Process (MDP) to maximize expected revenues over a finite horizon that explicitly models the current environment. We derive some structural results of the optimal admission policy, including the existence of an environment-dependent thresholds and a comparison of threshold levels in different environments. We also present some computational results which illustrate these structural properties. Finally, we extend some of the results to a related dynamic pricing formulation.
Keywords: Revenue management; Dynamic programming; Markov modulation (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221712006844
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:225:y:2013:i:2:p:324-331
DOI: 10.1016/j.ejor.2012.09.020
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().