A methodology for probabilistic model-based prognosis
A. Lorton,
M. Fouladirad and
A. Grall
European Journal of Operational Research, 2013, vol. 225, issue 3, 443-454
Abstract:
This paper deals with the prognosis of complex systems using stochastic model-based techniques. Prognosis consists in this case in computing the distribution of the Remaining Useful Life (RUL) of the system conditionally to available information. In so doing, three main challenges arise from the industrial context. First, the model should unify the two classical approaches to describing complex systems: the bottom-up and the top-down approaches. The former uses elementary interacting components whilst the latter models the system’s physical behavior by means of a set of differential equations. Second, the prognosis must integrate online information to provide a specific result for each system depending on their life events. Online information can take different forms (e.g. inspections, component faults, non detection or false alarm, noisy signal) which must all be considered. Third, the prognosis must supply ready, meaningful numerical results, the error of which must also be under control. This paper proposes a method addressing those challenges. The method is illustrated with two different examples: a simplified spring-mass system and a pneumatic valve for aeronautical application.
Keywords: Forecasting; Prognosis; PDMP; Reliability; Maintenance; Stochastic processes (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221712007710
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:225:y:2013:i:3:p:443-454
DOI: 10.1016/j.ejor.2012.10.025
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().