Nonparametric predictive reliability of series of voting systems
Ahmad M. Aboalkhair,
Frank P.A. Coolen and
Iain M. MacPhee
European Journal of Operational Research, 2013, vol. 226, issue 1, 77-84
Abstract:
Nonparametric Predictive Inference (NPI) for system reliability reflects the dependence of reliabilities of similar components due to limited knowledge from testing. NPI has recently been presented for reliability of a single voting system consisting of multiple types of components. The components are all assumed to play the same role within the system, but with regard to their reliability components of different types are assumed to be independent. The information from tests is available per type of component. This paper presents NPI for systems with subsystems in a series structure, where all subsystems are voting systems and components of the same type can be in different subsystems. As NPI uses only few modelling assumptions, system reliability is quantified by lower and upper probabilities, reflecting the limited information in the test data. The results are illustrated by examples, which also illustrate important aspects of redundancy and diversity for system reliability.
Keywords: k-out-of-m system; Lower and upper probabilities; Nonparametric predictive inference; Redundancy; System reliability; Voting system (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221712008156
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:226:y:2013:i:1:p:77-84
DOI: 10.1016/j.ejor.2012.11.001
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().