EconPapers    
Economics at your fingertips  
 

Packing and covering with linear programming: A survey

Cédric Bentz, Denis Cornaz and Bernard Ries

European Journal of Operational Research, 2013, vol. 227, issue 3, 409-422

Abstract: This paper considers the polyhedral results and the min–max results on packing and covering problems of the decade. Since the strong perfect graph theorem (published in 2006), the main such results are available for the packing problem, however there are still important polyhedral questions that remain open. For the covering problem, the main questions are still open, although there has been important progress. We survey some of the main results with emphasis on those where linear programming and graph theory come together. They mainly concern the covering of cycles or dicycles in graphs or signed graphs, either with vertices or edges; this includes the multicut and integral multiflow problems.

Keywords: Linear programming; Covering; Packing; Polyhedra; Min–max relation; Hypergraph (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221712008971
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:227:y:2013:i:3:p:409-422

DOI: 10.1016/j.ejor.2012.11.045

Access Statistics for this article

European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati

More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:ejores:v:227:y:2013:i:3:p:409-422