Robust regret for uncertain linear programs with application to co-production models
Tsan Sheng Ng
European Journal of Operational Research, 2013, vol. 227, issue 3, 483-493
Abstract:
This paper considers the regret optimization criterion for linear programming problems with uncertainty in the data inputs. The problems of study are more challenging than those considered in previous works that address only interval objective coefficients, and furthermore the uncertainties are allowed to arise from arbitrarily specified polyhedral sets. To this end a safe approximation of the regret function is developed so that the maximum regret can be evaluated reasonably efficiently by leveraging on previous established results and solution algorithms. The proposed approach is then applied to a two-stage co-production newsvendor problem that contains uncertainties in both supplies and demands. Computational experiments demonstrate that the proposed regret approximation is reasonably accurate, and the corresponding regret optimization model performs competitively well against other optimization approaches such as worst-case and sample average optimization across different performance measures.
Keywords: Uncertainty modelling; Linear programming; Minimax regret (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221713000416
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:227:y:2013:i:3:p:483-493
DOI: 10.1016/j.ejor.2013.01.014
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().