Formalizing and solving the problem of clustering in MCDA
Patrick Meyer and
Alexandru-Liviu Olteanu
European Journal of Operational Research, 2013, vol. 227, issue 3, 494-502
Abstract:
The topic of clustering has been widely studied in the field of Data Analysis, where it is defined as an unsupervised process of grouping objects together based on notions of similarity. Clustering in the field of Multi-Criteria Decision Aid (MCDA) has seen a few adaptations of methods from Data Analysis, most of them however using concepts native to that field, such as the notions of similarity and distance measures. As in MCDA we model the preferences of a decision maker over a set of decision alternatives, we can find more diverse ways of comparing them than in Data Analysis. As a result, these alternatives may also be arranged into different potential structures. In this paper we wish to formally define the problem of clustering in MCDA using notions that are native to this field alone, and highlight the different structures which we may try to uncover through this process. Following this we propose a method for finding these structures. As in any clustering problem, finding the optimal result in an exact manner is impractical, and so we propose a stochastic heuristic approach, which we validate through tests on a large set of artificially generated benchmarks.
Keywords: Clustering; Decision analysis; Metaheuristics; Combinatorial optimization (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (16)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S037722171300043X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:227:y:2013:i:3:p:494-502
DOI: 10.1016/j.ejor.2013.01.016
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().