Error estimation properties of Gaussian process models in stochastic simulations
Andres F. Hernandez and
Martha A. Grover
European Journal of Operational Research, 2013, vol. 228, issue 1, 131-140
Abstract:
The theoretical relationship between the prediction variance of a Gaussian process model (GPM) and its mean square prediction error is well known. This relationship has been studied for the case when deterministic simulations are used in GPM, with application to design of computer experiments and metamodeling optimization. This article analyzes the error estimation of Gaussian process models when the simulated data observations contain measurement noise. In particular, this work focuses on the correlation between the GPM prediction variance and the distribution of prediction errors over multiple experimental designs, as a function of location in the input space. The results show that the error estimation properties of a Gaussian process model using stochastic simulations are preserved when the signal-to-noise ratio in the data is larger than 10, regardless of the number of training points used in the metamodel. Also, this article concludes that the distribution of prediction errors approaches a normal distribution with a variance equal to the GPM prediction variance, even in the presence of significant bias in the GPM predictions.
Keywords: Simulation; Regression; Metamodeling; Gaussian process models; Error estimation (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221713000489
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:228:y:2013:i:1:p:131-140
DOI: 10.1016/j.ejor.2012.12.033
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().