Stochastic decomposition in production inventory with service time
A. Krishnamoorthy and
Narayanan C. Viswanath
European Journal of Operational Research, 2013, vol. 228, issue 2, 358-366
Abstract:
We study an (s,S) production inventory system where the processing of inventory requires a positive random amount of time. As a consequence a queue of demands is formed. Demand process is assumed to be Poisson, duration of each service and time required to add an item to the inventory when the production is on, are independent, non-identically distributed exponential random variables. We assume that no customer joins the queue when the inventory level is zero. This assumption leads to an explicit product form solution for the steady state probability vector, using a simple approach. This is despite the fact that there is a strong correlation between the lead-time (the time required to add an item into the inventory) and the number of customers waiting in the system. The technique is: combine the steady state vector of the classical M/M/1 queue and the steady state vector of a production inventory system where the service is instantaneous and no backlogs are allowed. Using a similar technique, the expected length of a production cycle is also obtained explicitly. The optimal values of S and the production switching on level s have been studied for a cost function involving the steady state system performance measures. Since we have obtained explicit expressions for the performance measures, analytic expressions have been derived for calculating the optimal values of S and s.
Keywords: Inventory; (s,S) Production inventory system; Positive service time; Markov processes; Decomposition (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S037722171300088X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:228:y:2013:i:2:p:358-366
DOI: 10.1016/j.ejor.2013.01.041
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().