Accelerating the convergence of value iteration by using partial transition functions
Edilson F. Arruda,
Fabrício O. Ourique,
Jason LaCombe and
Anthony Almudevar
European Journal of Operational Research, 2013, vol. 229, issue 1, 190-198
Abstract:
This work proposes an algorithm that makes use of partial information to improve the convergence properties of the value iteration algorithm in terms of the overall computational complexity. The algorithm iterates on a series of increasingly refined approximate models that converges to the true model according to an optimal linear rate, which coincides with the convergence rate of the original value iteration algorithm. The paper investigates the properties of the proposed algorithm and features a series of switchover queue examples which illustrates the efficacy of the method.
Keywords: Dynamic programming; Markov processes; Optimization (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221713001628
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:229:y:2013:i:1:p:190-198
DOI: 10.1016/j.ejor.2013.02.029
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().