Detecting copositivity of a symmetric matrix by an adaptive ellipsoid-based approximation scheme
Zhibin Deng,
Shu-Cherng Fang,
Qingwei Jin and
Wenxun Xing
European Journal of Operational Research, 2013, vol. 229, issue 1, 21-28
Abstract:
It is co-NP-complete to decide whether a given matrix is copositive or not. In this paper, this decision problem is transformed into a quadratic programming problem, which can be approximated by solving a sequence of linear conic programming problems defined on the dual cone of the cone of nonnegative quadratic functions over the union of a collection of ellipsoids. Using linear matrix inequalities (LMI) representations, each corresponding problem in the sequence can be solved via semidefinite programming. In order to speed up the convergence of the approximation sequence and to relieve the computational effort of solving linear conic programming problems, an adaptive approximation scheme is adopted to refine the union of ellipsoids. The lower and upper bounds of the transformed quadratic programming problem are used to determine the copositivity of the given matrix.
Keywords: Conic programming; Copositive; Cone of nonnegative quadratic functions; Adaptive approximation scheme (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221713001641
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:229:y:2013:i:1:p:21-28
DOI: 10.1016/j.ejor.2013.02.031
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().