Minimising the number of gap-zeros in binary matrices
Konstantin Chakhlevitch,
Celia A. Glass and
Natalia V. Shakhlevich
European Journal of Operational Research, 2013, vol. 229, issue 1, 48-58
Abstract:
We study a problem of minimising the total number of zeros in the gaps between blocks of consecutive ones in the columns of a binary matrix by permuting its rows. The problem is referred to as the Consecutive Ones Matrix Augmentation Problem, and is known to be NP-hard. An analysis of the structure of an optimal solution allows us to focus on a restricted solution space, and to use an implicit representation for searching the space. We develop an exact solution algorithm, which is linear-time in the number of rows if the number of columns is constant, and two constructive heuristics to tackle instances with an arbitrary number of columns. The heuristics use a novel solution representation based upon row sequencing. In our computational study, all heuristic solutions are either optimal or close to an optimum. One of the heuristics is particularly effective, especially for problems with a large number of rows.
Keywords: Combinatorial optimisation; Binary matrices; Consecutive ones property; Scheduling; Heuristics (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221713000751
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:229:y:2013:i:1:p:48-58
DOI: 10.1016/j.ejor.2013.01.028
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().