The single item uncapacitated lot-sizing problem with time-dependent batch sizes: NP-hard and polynomial cases
Ayse Akbalik and
Christophe Rapine
European Journal of Operational Research, 2013, vol. 229, issue 2, 353-363
Abstract:
This paper considers the uncapacitated lot sizing problem with batch delivery, focusing on the general case of time-dependent batch sizes. We study the complexity of the problem, depending on the other cost parameters, namely the setup cost, the fixed cost per batch, the unit procurement cost and the unit holding cost. We establish that if any one of the cost parameters is allowed to be time-dependent, the problem is NP-hard. On the contrary, if all the cost parameters are stationary, and assuming no unit holding cost, we show that the problem is polynomially solvable in time O(T3), where T denotes the number of periods of the horizon. We also show that, in the case of divisible batch sizes, the problem with time varying setup costs, a stationary fixed cost per batch and no unit procurement nor holding cost can be solved in time O(T3 logT).
Keywords: Inventory; Uncapacitated lot sizing; Batch delivery; Stepwise cost; Polynomial time algorithm; Complexity (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221713002014
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:229:y:2013:i:2:p:353-363
DOI: 10.1016/j.ejor.2013.02.052
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().