A Markov modulated Poisson model for software reliability
Joshua Landon,
Süleyman Özekici and
Refik Soyer
European Journal of Operational Research, 2013, vol. 229, issue 2, 404-410
Abstract:
In this paper, we consider a latent Markov process governing the intensity rate of a Poisson process model for software failures. The latent process enables us to infer performance of the debugging operations over time and allows us to deal with the imperfect debugging scenario. We develop the Bayesian inference for the model and also introduce a method to infer the unknown dimension of the Markov process. We illustrate the implementation of our model and the Bayesian approach by using actual software failure data.
Keywords: Software reliability; Hidden Markov model; Bayesian inference (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221713002221
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:229:y:2013:i:2:p:404-410
DOI: 10.1016/j.ejor.2013.03.014
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().