EconPapers    
Economics at your fingertips  
 

Robust weighted vertex p-center model considering uncertain data: An application to emergency management

Chung-Cheng Lu

European Journal of Operational Research, 2013, vol. 230, issue 1, 113-121

Abstract: This paper presents a generalized weighted vertex p-center (WVPC) model that represents uncertain nodal weights and edge lengths using prescribed intervals or ranges. The objective of the robust WVPC (RWVPC) model is to locate p facilities on a given set of candidate sites so as to minimize worst-case deviation in maximum weighted distance from the optimal solution. The RWVPC model is well-suited for locating urgent relief distribution centers (URDCs) in an emergency logistics system responding to quick-onset natural disasters in which precise estimates of relief demands from affected areas and travel times between URDCs and affected areas are not available. To reduce the computational complexity of solving the model, this work proposes a theorem that facilitates identification of the worst-case scenario for a given set of facility locations. Since the problem is NP-hard, a heuristic framework is developed to efficiently obtain robust solutions. Then, a specific implementation of the framework, based on simulated annealing, is developed to conduct numerical experiments. Experimental results show that the proposed heuristic is effective and efficient in obtaining robust solutions. We also examine the impact of the degree of data uncertainty on the selected performance measures and the tradeoff between solution quality and robustness. Additionally, this work applies the proposed RWVPC model to a real-world instance based on a massive earthquake that hit central Taiwan on September 21, 1999.

Keywords: Uncertainty modeling; Emergency logistics; p-Center model; Robust optimization (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (23)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221713002567
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:230:y:2013:i:1:p:113-121

DOI: 10.1016/j.ejor.2013.03.028

Access Statistics for this article

European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati

More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:ejores:v:230:y:2013:i:1:p:113-121