Advanced greedy algorithms and surrogate constraint methods for linear and quadratic knapsack and covering problems
Fred Glover
European Journal of Operational Research, 2013, vol. 230, issue 2, 212-225
Abstract:
New variants of greedy algorithms, called advanced greedy algorithms, are identified for knapsack and covering problems with linear and quadratic objective functions. Beginning with single-constraint problems, we provide extensions for multiple knapsack and covering problems, in which objects must be allocated to different knapsacks and covers, and also for multi-constraint (multi-dimensional) knapsack and covering problems, in which the constraints are exploited by means of surrogate constraint strategies. In addition, we provide a new graduated-probe strategy for improving the selection of variables to be assigned values. Going beyond the greedy and advanced greedy frameworks, we describe ways to utilize these algorithms with multi-start and strategic oscillation metaheuristics. Finally, we identify how surrogate constraints can be utilized to produce inequalities that dominate those previously proposed and tested utilizing linear programming methods for solving multi-constraint knapsack problems, which are responsible for the current best methods for these problems. While we focus on 0–1 problems, our approaches can readily be adapted to handle variables with general upper bounds.
Keywords: Metaheuristics; Greedy algorithms; Knapsack/covering problems; Surrogate constraints; Multi-start/strategic oscillation; Tabu search (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221713003081
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:230:y:2013:i:2:p:212-225
DOI: 10.1016/j.ejor.2013.04.010
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().