Variable neighborhood search for minimum sum-of-squares clustering on networks
Emilio Carrizosa,
Nenad Mladenović and
Raca Todosijević
European Journal of Operational Research, 2013, vol. 230, issue 2, 356-363
Abstract:
Euclidean Minimum Sum-of-Squares Clustering amounts to finding p prototypes by minimizing the sum of the squared Euclidean distances from a set of points to their closest prototype. In recent years related clustering problems have been extensively analyzed under the assumption that the space is a network, and not any more the Euclidean space. This allows one to properly address community detection problems, of significant relevance in diverse phenomena in biological, technological and social systems. However, the problem of minimizing the sum of squared distances on networks have not yet been addressed. Two versions of the problem are possible: either the p prototypes are sought among the set of nodes of the network, or also points along edges are taken into account as possible prototypes. While the first problem is transformed into a classical discrete p-median problem, the latter is new in the literature, and solved in this paper with the Variable Neighborhood Search heuristic. The solutions of the two problems are compared in a series of test examples.
Keywords: Minimum sum-of-squares clustering; Location on networks; Variable neighborhood search (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S037722171300341X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:230:y:2013:i:2:p:356-363
DOI: 10.1016/j.ejor.2013.04.027
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().