A linear programming approach for linear programs with probabilistic constraints
Daniel Reich
European Journal of Operational Research, 2013, vol. 230, issue 3, 487-494
Abstract:
We study a class of mixed-integer programs for solving linear programs with joint probabilistic constraints from random right-hand side vectors with finite distributions. We present greedy and dual heuristic algorithms that construct and solve a sequence of linear programs. We provide optimality gaps for our heuristic solutions via the linear programming relaxation of the extended mixed-integer formulation of Luedtke et al. (2010) [13] as well as via lower bounds produced by their cutting plane method. While we demonstrate through an extensive computational study the effectiveness and scalability of our heuristics, we also prove that the theoretical worst-case solution quality for these algorithms is arbitrarily far from optimal. Our computational study compares our heuristics against both the extended mixed-integer programming formulation and the cutting plane method of Luedtke et al. (2010) [13]. Our heuristics efficiently and consistently produce solutions with small optimality gaps, while for larger instances the extended formulation becomes intractable and the optimality gaps from the cutting plane method increase to over 5%.
Keywords: Linear programming; Integer programming; Stochastic programming; Chance constrained programming; Heuristics (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221713003639
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:230:y:2013:i:3:p:487-494
DOI: 10.1016/j.ejor.2013.04.049
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().