EconPapers    
Economics at your fingertips  
 

Machine-part cell formation using biclustering

Basilis Boutsinas

European Journal of Operational Research, 2013, vol. 230, issue 3, 563-572

Abstract: Cellular manufacturing is the cornerstone of many modern flexible manufacturing techniques, taking advantage of the similarities between parts in order to decrease the complexity of the design and manufacturing life cycle. Part-Machine Grouping (PMG) problem is the key step in cellular manufacturing aiming at grouping parts with similar processing requirements or similar design features into part families and by grouping machines into cells associated to these families. The PMG problem is NP-complete and the different proposed techniques for solving it are based on heuristics. In this paper, a new approach for solving the PMG problem is proposed which is based on biclustering. Biclustering is a methodology where rows and columns of an input data matrix are clustered simultaneously. A bicluster is defined as a submatrix spanned by both a subset of rows and a subset of columns. Although biclustering has been almost exclusively applied to DNA microarray analysis, we present that biclustering can be successfully applied to the PMG problem. We also present empirical results to demonstrate the efficiency and accuracy of the proposed technique with respect to related ones for various formations of the problem.

Keywords: Flexible manufacturing systems; Data mining; Group technology; Cell formation; Biclustering (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221713003913
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:230:y:2013:i:3:p:563-572

DOI: 10.1016/j.ejor.2013.05.007

Access Statistics for this article

European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati

More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:ejores:v:230:y:2013:i:3:p:563-572