EconPapers    
Economics at your fingertips  
 

Surrogate duality for robust optimization

Satoshi Suzuki, Daishi Kuroiwa and Gue Myung Lee

European Journal of Operational Research, 2013, vol. 231, issue 2, 257-262

Abstract: Robust optimization problems, which have uncertain data, are considered. We prove surrogate duality theorems for robust quasiconvex optimization problems and surrogate min–max duality theorems for robust convex optimization problems. We give necessary and sufficient constraint qualifications for surrogate duality and surrogate min–max duality, and show some examples at which such duality results are used effectively. Moreover, we obtain a surrogate duality theorem and a surrogate min–max duality theorem for semi-definite optimization problems in the face of data uncertainty.

Keywords: Nonlinear programming; Quasiconvex programming; Robust optimization (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221713001999
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:231:y:2013:i:2:p:257-262

DOI: 10.1016/j.ejor.2013.02.050

Access Statistics for this article

European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati

More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:ejores:v:231:y:2013:i:2:p:257-262