On the convergence of inexact block coordinate descent methods for constrained optimization
A. Cassioli,
D. Di Lorenzo and
M. Sciandrone
European Journal of Operational Research, 2013, vol. 231, issue 2, 274-281
Abstract:
We consider the problem of minimizing a smooth function over a feasible set defined as the Cartesian product of convex compact sets. We assume that the dimension of each factor set is huge, so we are interested in studying inexact block coordinate descent methods (possibly combined with column generation strategies). We define a general decomposition framework where different line search based methods can be embedded, and we state global convergence results. Specific decomposition methods based on gradient projection and Frank–Wolfe algorithms are derived from the proposed framework. The numerical results of computational experiments performed on network assignment problems are reported.
Keywords: Nonlinear programming; Block coordinate descent methods; Inexact decomposition methods; Gradient projection; Frank–Wolfe (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221713004669
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:231:y:2013:i:2:p:274-281
DOI: 10.1016/j.ejor.2013.05.049
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().