A reduction dynamic programming algorithm for the bi-objective integer knapsack problem
Aiying Rong and
José Rui Figueira
European Journal of Operational Research, 2013, vol. 231, issue 2, 299-313
Abstract:
This paper presents a backward state reduction dynamic programming algorithm for generating the exact Pareto frontier for the bi-objective integer knapsack problem. The algorithm is developed addressing a reduced problem built after applying variable fixing techniques based on the core concept. First, an approximate core is obtained by eliminating dominated items. Second, the items included in the approximate core are subject to the reduction of the upper bounds by applying a set of weighted-sum functions associated with the efficient extreme solutions of the linear relaxation of the multi-objective integer knapsack problem. Third, the items are classified according to the values of their upper bounds; items with zero upper bounds can be eliminated. Finally, the remaining items are used to form a mixed network with different upper bounds. The numerical results obtained from different types of bi-objective instances show the effectiveness of the mixed network and associated dynamic programming algorithm.
Keywords: Multi-objective programming; Integer knapsack problem; Dynamic programming; Dominance relation; Core concept; State reduction (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221713004621
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:231:y:2013:i:2:p:299-313
DOI: 10.1016/j.ejor.2013.05.045
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().