An exact algorithm to minimize mean squared deviation of job completion times about a common due date
B. Srirangacharyulu and
G. Srinivasan
European Journal of Operational Research, 2013, vol. 231, issue 3, 547-556
Abstract:
We consider a deterministic n-job, single machine scheduling problem with the objective of minimizing the Mean Squared Deviation (MSD) of job completion times about a common due date (d). The MSD measure is non-regular and its value can decrease when one or more completion times increases. MSD problem is connected with the Completion Time Variance (CTV) problem and has been proved to be NP-hard. This problem finds application in situations where uniformity of service is important. We present an exact algorithm of pseudo-polynomial complexity, using ideas from branch and bound and dynamic programming. We propose a dominance rule and also develop a lower bound on MSD. The dominance rule and lower bound are effectively combined and used in the development of the proposed algorithm. The search space is explored using the breadth first branching strategy. The asymptotic space complexity of the algorithm is O(nd). Irrespective of the version of the problem – tightly constrained, constrained or unconstrained – the proposed algorithm provides optimal solutions for problem instances up to 1000 jobs size under different due date settings.
Keywords: Scheduling; Mean squared deviation; Branch and bound; Dynamic programming (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221713005055
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:231:y:2013:i:3:p:547-556
DOI: 10.1016/j.ejor.2013.06.017
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().