A linear model for surface mining haul truck allocation incorporating shovel idle probabilities
Chung H. Ta,
Armann Ingolfsson and
John Doucette
European Journal of Operational Research, 2013, vol. 231, issue 3, 770-778
Abstract:
We present models of trucks and shovels in oil sand surface mines. The models are formulated to minimize the number of trucks for a given set of shovels, subject to throughput and ore grade constraints. We quantify and validate the nonlinear relation between a shovel’s idle probability (which determines the shovel’s productivity) and the number of trucks assigned to the shovel via a simple approximation, based on the theory of finite source queues. We use linearization to incorporate this expression into linear integer programs. We assume in our integer programs that each shovel is assigned a single truck size but we outline how one could account for multiple truck sizes per shovel in an approximate fashion. The linearization of shovel idle probabilities allows us to formulate more accurate truck allocation models that are easily solvable for realistic-sized problems.
Keywords: Queueing; OR in natural resources; Integer programming; Truck allocation; Oil sand mining (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221713005043
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:231:y:2013:i:3:p:770-778
DOI: 10.1016/j.ejor.2013.06.016
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().