Heuristics with guaranteed performance bounds for a manufacturing system with product recovery
Yan Feng and
S. Viswanathan
European Journal of Operational Research, 2014, vol. 232, issue 2, 322-329
Abstract:
We consider a manufacturing system with product recovery. The system manufactures a new product as well as remanufactures the product from old, returned items. The items remanufactured with the returned products are as good as new and satisfy the same demand as the new item. The demand rate for the new item and the return rate for the old item are deterministic and constant. The relevant costs are the holding costs for the new item and the returned item, and the fixed setup costs for both manufacturing and remanufacturing. The objective is to determine the lot sizes and production schedule for manufacturing and remanufacturing so as to minimize the long-run average cost per unit time. We first develop a lower bound among all classes of policies for the problem. We then show that the optimal integer ratio policy for the problem obtains a solution whose cost is at most 1.5% more than the lower bound.
Keywords: Inventory; Remanufacturing; Product returns; Lot sizing and scheduling; Performance bounds (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221713005687
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:232:y:2014:i:2:p:322-329
DOI: 10.1016/j.ejor.2013.07.006
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().