Preference inference with general additive value models and holistic pair-wise statements
Remy Spliet and
Tommi Tervonen
European Journal of Operational Research, 2014, vol. 232, issue 3, 607-612
Abstract:
Additive multi-attribute value models and additive utility models with discrete outcome sets are widely applied in both descriptive and normative decision analysis. Their non-parametric application allows preference inference by analyzing sets of general additive value functions compatible with the observed or elicited holistic pair-wise preference statements. In this paper, we provide necessary and sufficient conditions for the preference inference based on a single preference statement, and sufficient conditions for the inference based on multiple preference statements. In our computational experiments all inferences could be made with these conditions. Moreover, our analysis suggests that the non-parametric analyses of general additive value models are unlikely to be useful by themselves for decision support in contexts where the decision maker preferences are elicited in the form of holistic pair-wise statements.
Keywords: Multiple criteria analysis; Decision analysis; Preference learning; Multi-attribute value theory; Robust ordinal regression (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221713006176
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:232:y:2014:i:3:p:607-612
DOI: 10.1016/j.ejor.2013.07.036
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().