Nonparametric quantile frontier estimation under shape restriction
Yongqiao Wang,
Shouyang Wang,
Chuangyin Dang and
Wenxiu Ge
European Journal of Operational Research, 2014, vol. 232, issue 3, 671-678
Abstract:
This paper proposes a shape-restricted nonparametric quantile regression to estimate the τ-frontier, which acts as a benchmark for whether a decision making unit achieves top τ efficiency. This method adopts a two-step strategy: first, identifying fitted values that minimize an asymmetric absolute loss under the nondecreasing and concave shape restriction; second, constructing a nondecreasing and concave estimator that links these fitted values. This method makes no assumption on the error distribution and the functional form. Experimental results on some artificial data sets clearly demonstrate its superiority over the classical linear quantile regression. We also discuss how to enforce constraints to avoid quantile crossings between multiple estimated frontiers with different values of τ. Finally this paper shows that this method can be applied to estimate the production function when one has some prior knowledge about the error term.
Keywords: Productivity and competitiveness; Production frontier; Quantile regression; Shape restriction; Concavity; Non-crossing (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (26)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221713005560
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:232:y:2014:i:3:p:671-678
DOI: 10.1016/j.ejor.2013.06.049
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().