A generalized multiplicative directional distance function for efficiency measurement in DEA
Mahmood Mehdiloozad,
Biresh Sahoo () and
Israfil Roshdi ()
European Journal of Operational Research, 2014, vol. 232, issue 3, 679-688
Abstract:
For measuring technical efficiency relative to a log-linear technology, a generalized multiplicative directional distance function (GMDDF) is developed using the framework of multiplicative directional distance function (MDDF). Furthermore, a computational procedure is suggested for its estimation. The GMDDF serves as a comprehensive measure of efficiency in revealing Pareto-efficient targets as it accounts for all possible input and output slacks. This measure satisfies several desirable properties of an ideal efficiency measure such as strong monotonicity, unit invariance, translation invariance, and positive affine transformation invariance. This measure can be easily implemented in any standard DEA software and provides the decision makers with the option of specifying preferable direction vectors for incorporating their decision-making preferences. Finally, to demonstrate the ready applicability of our proposed measure, an illustrative empirical analysis is conducted based on real-life data set of 20 hardware computer companies in India.
Keywords: Data envelopment analysis; Multiplicative directional distance function; Generalized multiplicative directional distance function; Log-convexity; Piece-wise log-linear technology (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (21)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221713006449
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:232:y:2014:i:3:p:679-688
DOI: 10.1016/j.ejor.2013.07.042
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().