Two-stage stochastic linear programs with incomplete information on uncertainty
James Ang,
Fanwen Meng and
Jie Sun
European Journal of Operational Research, 2014, vol. 233, issue 1, 16-22
Abstract:
Two-stage stochastic linear programming is a classical model in operations research. The usual approach to this model requires detailed information on distribution of the random variables involved. In this paper, we only assume the availability of the first and second moments information of the random variables. By using duality of semi-infinite programming and adopting a linear decision rule, we show that a deterministic equivalence of the two-stage problem can be reformulated as a second-order cone optimization problem. Preliminary numerical experiments are presented to demonstrate the computational advantage of this approach.
Keywords: Stochastic programming; Linear decision rule; Second order cone optimization (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221713006413
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:233:y:2014:i:1:p:16-22
DOI: 10.1016/j.ejor.2013.07.039
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().