Optimal relay node placement in delay constrained wireless sensor network design
Ashutosh Nigam and
Yogesh K. Agarwal
European Journal of Operational Research, 2014, vol. 233, issue 1, 220-233
Abstract:
The Delay Constrained Relay Node Placement Problem (DCRNPP) frequently arises in the Wireless Sensor Network (WSN) design. In WSN, Sensor Nodes are placed across a target geographical region to detect relevant signals. These signals are communicated to a central location, known as the Base Station, for further processing. The DCRNPP aims to place the minimum number of additional Relay Nodes at a subset of Candidate Relay Node locations in such a manner that signals from various Sensor Nodes can be communicated to the Base Station within a pre-specified delay bound. In this paper, we study the structure of the projection polyhedron of the problem and develop valid inequalities in form of the node-cut inequalities. We also derive conditions under which these inequalities are facet defining for the projection polyhedron. We formulate a branch-and-cut algorithm, based upon the projection formulation, to solve DCRNPP optimally. A Lagrangian relaxation based heuristic is used to generate a good initial solution for the problem that is used as an initial incumbent solution in the branch-and-cut approach. Computational results are reported on several randomly generated instances to demonstrate the efficacy of the proposed algorithm.
Keywords: Relay node placement; Cutting plane/facet; Polyhedral theory; Projection; Branch and cut; Lagrangian-relaxation (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221713006966
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:233:y:2014:i:1:p:220-233
DOI: 10.1016/j.ejor.2013.08.031
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().