Symmetry in RLT-type relaxations for the quadratic assignment and standard quadratic optimization problems
Etienne de Klerk,
Marianna E. -Nagy,
Renata Sotirov () and
Uwe Truetsch
European Journal of Operational Research, 2014, vol. 233, issue 3, 488-499
Abstract:
The reformulation–linearization technique (RLT), introduced in [Sherali, H. D., Adams. W. P. (1990). A hierarchy of relaxations between the continuous and convex hull representations for zero-one programming problems. SIAM Journal on Discrete Mathematics 3(3), 411–430], provides a way to compute a hierarchy of linear programming bounds on the optimal values of NP-hard combinatorial optimization problems. In this paper we show that, in the presence of suitable algebraic symmetry in the original problem data, it is sometimes possible to compute level two RLT bounds with additional linear matrix inequality constraints. As an illustration of our methodology, we compute the best-known bounds for certain graph partitioning problems on strongly regular graphs.
Keywords: Reformulation–linearization technique; Sherali–Adams hierarchy; Quadratic assignment problem; Standard quadratic optimization; Semidefinite programming (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221713008308
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:233:y:2014:i:3:p:488-499
DOI: 10.1016/j.ejor.2013.10.007
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().