EconPapers    
Economics at your fingertips  
 

Applying simulated annealing using different methods for the neighborhood search in forest planning problems

Paulo Borges, Tron Eid and Even Bergseng

European Journal of Operational Research, 2014, vol. 233, issue 3, 700-710

Abstract: Adjacency constraints along with even flow harvest constraints are important in long term forest planning. Simulated annealing (SA) is previously successfully applied when addressing such constraints. The objective of this paper was to assess the performance of SA under three new methods of introducing biased probabilities in the management unit (MU) selection and compare them to the conventional method that assumes uniform probabilities. The new methods were implemented as a search vector approach based on the number of treatment schedules describing sequences of silvicultural treatments over time and standard deviation of net present value within MUs (Methods 2 and 3, respectively), and by combining the two approaches (Method 4). We constructed three hundred hypothetical forests (datasets) for three different landscapes characterized by different initial age class distributions (young, normal and old). Each dataset encompassed 1600 management units. The evaluation of the methods was done by means of objective function values, first feasible iteration and time consumption. Introducing a bias in the MU selection improves solutions compared to the conventional method (Method 1). However, an increase of computational time is in general needed for the new methods. Method 4 is the best alternative because, for large parts of the datasets, produced the best average and maximum objective function values and had lower time consumption than Methods 2 and 3. Although Method 4 performed very well, Methods 2 and 3 should not be neglected because for a considerable number of datasets the maximum objective function values were obtained by these methods.

Keywords: OR in natural resources; Metaheuristics; Adjacency unit restriction model; Sequential flow; Biased probabilities (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221713007236
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:233:y:2014:i:3:p:700-710

DOI: 10.1016/j.ejor.2013.08.039

Access Statistics for this article

European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati

More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:ejores:v:233:y:2014:i:3:p:700-710