Superquantile regression with applications to buffered reliability, uncertainty quantification, and conditional value-at-risk
R.T. Rockafellar,
J.O. Royset and
S.I. Miranda
European Journal of Operational Research, 2014, vol. 234, issue 1, 140-154
Abstract:
The paper presents a generalized regression technique centered on a superquantile (also called conditional value-at-risk) that is consistent with that coherent measure of risk and yields more conservatively fitted curves than classical least-squares and quantile regression. In contrast to other generalized regression techniques that approximate conditional superquantiles by various combinations of conditional quantiles, we directly and in perfect analog to classical regression obtain superquantile regression functions as optimal solutions of certain error minimization problems. We show the existence and possible uniqueness of regression functions, discuss the stability of regression functions under perturbations and approximation of the underlying data, and propose an extension of the coefficient of determination R-squared for assessing the goodness of fit. The paper presents two numerical methods for solving the error minimization problems and illustrates the methodology in several numerical examples in the areas of uncertainty quantification, reliability engineering, and financial risk management.
Keywords: Generalized regression; Superquantiles; Conditional value-at-risk; Uncertainty quantification; Buffered failure probability; Stochastic programming (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (16)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221713008692
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:234:y:2014:i:1:p:140-154
DOI: 10.1016/j.ejor.2013.10.046
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().