EconPapers    
Economics at your fingertips  
 

Superquantile regression with applications to buffered reliability, uncertainty quantification, and conditional value-at-risk

R.T. Rockafellar, J.O. Royset and S.I. Miranda

European Journal of Operational Research, 2014, vol. 234, issue 1, 140-154

Abstract: The paper presents a generalized regression technique centered on a superquantile (also called conditional value-at-risk) that is consistent with that coherent measure of risk and yields more conservatively fitted curves than classical least-squares and quantile regression. In contrast to other generalized regression techniques that approximate conditional superquantiles by various combinations of conditional quantiles, we directly and in perfect analog to classical regression obtain superquantile regression functions as optimal solutions of certain error minimization problems. We show the existence and possible uniqueness of regression functions, discuss the stability of regression functions under perturbations and approximation of the underlying data, and propose an extension of the coefficient of determination R-squared for assessing the goodness of fit. The paper presents two numerical methods for solving the error minimization problems and illustrates the methodology in several numerical examples in the areas of uncertainty quantification, reliability engineering, and financial risk management.

Keywords: Generalized regression; Superquantiles; Conditional value-at-risk; Uncertainty quantification; Buffered failure probability; Stochastic programming (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (16)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221713008692
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:234:y:2014:i:1:p:140-154

DOI: 10.1016/j.ejor.2013.10.046

Access Statistics for this article

European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati

More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:ejores:v:234:y:2014:i:1:p:140-154