A semi-parametric approach for estimating critical fractiles under autocorrelated demand
Yun Shin Lee
European Journal of Operational Research, 2014, vol. 234, issue 1, 163-173
Abstract:
Forecasting critical fractiles of the lead time demand distribution is an important problem for operations managers making newsvendor-type inventory decisions. In this paper, we propose a semi-parametric approach to forecasting the critical fractile when demand is serially correlated. Starting from a user-defined but potentially misspecified forecasting model, we use historical demand data to generate empirical forecast errors of this model. These errors are then used to (1) parametrically correct for any bias in the point forecast conditional on the recent demand history and (2) non-parametrically estimate the critical fractile of the demand distribution without imposing distributional assumptions. We present conditions under which this semi-parametric approach provides a consistent estimate of the critical fractile and evaluate its finite sample properties using simulation and real data for retail inventory planning.
Keywords: Forecasting; Newsvendor model; Autocorrelated demand; Model misspecification; Forecast bias; Retail operations (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221713008783
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:234:y:2014:i:1:p:163-173
DOI: 10.1016/j.ejor.2013.10.055
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().