EconPapers    
Economics at your fingertips  
 

Mean–variance approximations to expected utility

Harry Markowitz

European Journal of Operational Research, 2014, vol. 234, issue 2, 346-355

Abstract: It is often asserted that the application of mean–variance analysis assumes normal (Gaussian) return distributions or quadratic utility functions. This common mistake confuses sufficient versus necessary conditions for the applicability of modern portfolio theory. If one believes (as does the author) that choice should be guided by the expected utility maxim, then the necessary and sufficient condition for the practical use of mean–variance analysis is that a careful choice from a mean–variance efficient frontier will approximately maximize expected utility for a wide variety of concave (risk-averse) utility functions. This paper reviews a half-century of research on mean–variance approximations to expected utility. The many studies in this field have been generally supportive of mean–variance analysis, subject to certain (initially unanticipated) caveats.

Keywords: Mean–variance analysis; Expected utility; Geometric mean; Mean-absolute deviation; Semivariance; Value at risk (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (68)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221712006467
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:234:y:2014:i:2:p:346-355

DOI: 10.1016/j.ejor.2012.08.023

Access Statistics for this article

European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati

More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:ejores:v:234:y:2014:i:2:p:346-355