Mean–variance–skewness efficient surfaces, Stein’s lemma and the multivariate extended skew-Student distribution
C.J. Adcock
European Journal of Operational Research, 2014, vol. 234, issue 2, 392-401
Abstract:
Recent advances in Stein’s lemma imply that under elliptically symmetric distributions all rational investors will select a portfolio which lies on Markowitz’ mean–variance efficient frontier. This paper describes extensions to Stein’s lemma for the case when a random vector has the multivariate extended skew-Student distribution. Under this distribution, rational investors will select a portfolio which lies on a single mean–variance–skewness efficient hyper-surface. The same hyper-surface arises under a broad class of models in which returns are defined by the convolution of a multivariate elliptically symmetric distribution and a multivariate distribution of non-negative random variables. Efficient portfolios on the efficient surface may be computed using quadratic programming.
Keywords: Finance; Multivariate statistics; Utility theory (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (14)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221713005924
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:234:y:2014:i:2:p:392-401
DOI: 10.1016/j.ejor.2013.07.011
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().