An approach to optimize block surgical schedules
Sangdo Choi and
Wilbert E. Wilhelm
European Journal of Operational Research, 2014, vol. 235, issue 1, 138-148
Abstract:
We provide an approach to optimize a block surgical schedule (BSS) that adheres to the block scheduling policy, using a new type of newsvendor-based model. We assume that strategic decisions assign a specialty to each Operating Room (OR) day and deal with BSS decisions that assign sub-specialties to time blocks, determining block duration as well as sequence in each OR each day with the objective of minimizing the sum of expected lateness and earliness costs. Our newsvendor approach prescribes the optimal duration of each block and the best permutation, obtained by solving the sequential newsvendor problem, determines the optimal block sequence. We obtain closed-form solutions for the case in which surgery durations follow the normal distribution. Furthermore, we give a closed-form solution for optimal block duration with no-shows.
Keywords: Operations research in health service; Block surgical schedule; Sequential newsvendor; Normal distribution; No-shows (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221713008631
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:235:y:2014:i:1:p:138-148
DOI: 10.1016/j.ejor.2013.10.040
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().