A viscosity method with no spectral radius requirements for the split common fixed point problem
Paul-Emile Maingé
European Journal of Operational Research, 2014, vol. 235, issue 1, 17-27
Abstract:
This paper is concerned with an algorithmic solution to the split common fixed point problem in Hilbert spaces. Our method can be regarded as a variant of the “viscosity approximation method”. Under very classical assumptions, we establish a strong convergence theorem with regard to involved operators belonging to the wide class of quasi-nonexpansive operators. In contrast with other related processes, our algorithm does not require any estimate of some spectral radius. The technique of analysis developed in this work is new and can be applied to many other fixed point iterations. Numerical experiments are also performed with regard to an inverse heat problem.
Keywords: Split inverse problem; Fixed point method; Projected subgradient method; Viscosity method; Variational inequality; Volterra integral equation (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221713009454
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:235:y:2014:i:1:p:17-27
DOI: 10.1016/j.ejor.2013.11.028
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().