Reliability analysis of a single warm-standby system subject to repairable and nonrepairable failures
Charles E. Wells
European Journal of Operational Research, 2014, vol. 235, issue 1, 180-186
Abstract:
An n-unit system provisioned with a single warm standby is investigated. The individual units are subject to repairable failures, while the entire system is subject to a nonrepairable failure at some finite but random time in the future. System performance measures for systems observed over a time interval of random duration are introduced. Two models to compute these system performance measures, one employing a policy of block replacement, and the other without a block replacement policy, are developed. Distributional assumptions involving distributions of phase type introduce matrix Laplace transformations into the calculations of the performance measures. It is shown that these measures are easily carried out on a laptop computer using Microsoft Excel. A simple economic model is used to illustrate how the performance measures may be used to determine optimal economic design specifications for the warm standby.
Keywords: Reliability; Applied probability; Warm standby system; Distributions of phase type (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (15)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221713010114
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:235:y:2014:i:1:p:180-186
DOI: 10.1016/j.ejor.2013.12.027
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().