Group decision making with expertons and uncertain generalized probabilistic weighted aggregation operators
José M. Merigó,
Montserrat Casanovas and
Jian-Bo Yang
European Journal of Operational Research, 2014, vol. 235, issue 1, 215-224
Abstract:
Expertons and uncertain aggregation operators are tools for dealing with imprecise information that can be assessed with interval numbers. This paper introduces the uncertain generalized probabilistic weighted averaging (UGPWA) operator. It is an aggregation operator that unifies the probability and the weighted average in the same formulation considering the degree of importance that each concept has in the aggregation. Moreover, it is able to assess uncertain environments that cannot be assessed with exact numbers but it is possible to use interval numbers. Thus, we can analyze imprecise information considering the minimum and the maximum result that may occur. Further extensions to this approach are presented including the quasi-arithmetic uncertain probabilistic weighted averaging operator and the uncertain generalized probabilistic weighted moving average. We analyze the applicability of this new approach in a group decision making problem by using the theory of expertons in strategic management.
Keywords: Theory of expertons; Probabilistic weighted average; Interval numbers; Group decision making (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (18)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221713008345
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:235:y:2014:i:1:p:215-224
DOI: 10.1016/j.ejor.2013.10.011
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().