Genetic-algorithm-based simulation optimization considering a single stochastic constraint
Shing Chih Tsai and
Sheng Yang Fu
European Journal of Operational Research, 2014, vol. 236, issue 1, 113-125
Abstract:
In this paper, we consider the discrete optimization via simulation problem with a single stochastic constraint. We present two genetic-algorithm-based algorithms that adopt different sampling rules and searching mechanisms, and thus deliver different statistical guarantees. The first algorithm offers global convergence as the simulation effort goes to infinity. However, the algorithm’s finite-time efficiency may be sacrificed to maintain this theoretically appealing property. We therefore propose the second heuristic algorithm that can take advantage of the desirable mechanics of genetic algorithm, and might be better able to find near-optimal solutions in a reasonable amount of time. Empirical studies are performed to compare the efficiency of the proposed algorithms with other existing ones.
Keywords: Metaheuristics; Genetic algorithm; Simulation; Simulation-based optimization; Feasibility determination (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S037722171300951X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:236:y:2014:i:1:p:113-125
DOI: 10.1016/j.ejor.2013.11.034
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().