EconPapers    
Economics at your fingertips  
 

Can long-run dynamic optimal strategies outperform fixed-mix portfolios? Evidence from multiple data sets

Daniele Bianchi and Massimo Guidolin

European Journal of Operational Research, 2014, vol. 236, issue 1, 160-176

Abstract: Using five alternative data sets and a range of specifications concerning the underlying linear predictability models, we study whether long-run dynamic optimizing portfolio strategies may actually outperform simpler benchmarks in out-of-sample tests. The dynamic portfolio problems are solved using a combination of dynamic programming and Monte Carlo methods. The benchmarks are represented by two typical fixed mix strategies: the celebrated equally-weighted portfolio and a myopic, Markowitz-style strategy that fails to account for any predictability in asset returns. Within a framework in which the investor maximizes expected HARA (constant relative risk aversion) utility in a frictionless market, our key finding is that there are enormous difference in optimal long-horizon (in-sample) weights between the mean–variance benchmark and the optimal dynamic weights. In out-of-sample comparisons, there is however no clear-cut, systematic, evidence that long-horizon dynamic strategies outperform naively diversified portfolios.

Keywords: Finance; Investment analysis; Portfolio choice; Predictability (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221714000514
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:236:y:2014:i:1:p:160-176

DOI: 10.1016/j.ejor.2014.01.030

Access Statistics for this article

European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati

More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-23
Handle: RePEc:eee:ejores:v:236:y:2014:i:1:p:160-176