A tollbooth tandem queue with heterogeneous servers
Qi-Ming He and
Xiuli Chao
European Journal of Operational Research, 2014, vol. 236, issue 1, 177-189
Abstract:
We study a tandem queueing system with K servers and no waiting space in between. A customer needs service from one server but can leave the system only if all down-stream servers are unoccupied. Such a system is often observed in toll collection during rush hours in transportation networks, and we call it a tollbooth tandem queue. We apply matrix-analytic methods to study this queueing system, and obtain explicit results for various performance measures. Using these results, we can efficiently compute the mean and variance of the queue lengths, waiting time, sojourn time, and departure delays. Numerical examples are presented to gain insights into the performance and design of the tollbooth tandem queue. In particular, it reveals that the intuitive result of arranging servers in decreasing order of service speed (i.e., arrange faster servers at downstream stations) is not always optimal for minimizing the mean queue length or mean waiting time.
Keywords: Tandem queue; Matrix-analytic methods; Traffic management (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221714000885
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:236:y:2014:i:1:p:177-189
DOI: 10.1016/j.ejor.2014.01.049
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().