A novel Lagrangian relaxation approach for a hybrid flowshop scheduling problem in the steelmaking-continuous casting process
Kun Mao,
Quan-ke Pan,
Xinfu Pang and
Tianyou Chai
European Journal of Operational Research, 2014, vol. 236, issue 1, 51-60
Abstract:
One of the largest bottlenecks in iron and steel production is the steelmaking-continuous casting (SCC) process, which consists of steel-making, refining and continuous casting. The SCC scheduling is a complex hybrid flowshop (HFS) scheduling problem with the following features: job grouping and precedence constraints, no idle time within the same group of jobs and setup time constraints on the casters. This paper first models the scheduling problem as a mixed-integer programming (MIP) problem with the objective of minimizing the total weighted earliness/tardiness penalties and job waiting. Next, a Lagrangian relaxation (LR) approach relaxing the machine capacity constraints is presented to solve the MIP problem, which decomposes the relaxed problem into two tractable subproblems by separating the continuous variables from the integer ones. Additionally, two methods, i.e., the boundedness detection method and time horizon method, are explored to handle the unboundedness of the decomposed subproblems in iterations. Furthermore, an improved subgradient level algorithm with global convergence is developed to solve the Lagrangian dual (LD) problem. The computational results and comparisons demonstrate that the proposed LR approach outperforms the conventional LR approaches in terms of solution quality, with a significantly shorter running time being observed.
Keywords: Scheduling; Hybrid flowshop; Subgradient optimization; Steelmaking-continuous casting (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (15)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221713009090
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:236:y:2014:i:1:p:51-60
DOI: 10.1016/j.ejor.2013.11.010
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().