EconPapers    
Economics at your fingertips  
 

When is rounding allowed in integer nonlinear optimization?

Ruth Hübner and Anita Schöbel

European Journal of Operational Research, 2014, vol. 237, issue 2, 404-410

Abstract: In this paper we consider nonlinear integer optimization problems. Nonlinear integer programming has mainly been studied for special classes, such as convex and concave objective functions and polyhedral constraints. In this paper we follow an other approach which is not based on convexity or concavity. Studying geometric properties of the level sets and the feasible region, we identify cases in which an integer minimizer of a nonlinear program can be found by rounding (up or down) the coordinates of a solution to its continuous relaxation. We call this property rounding property. If it is satisfied, it enables us (for fixed dimension) to solve an integer programming problem in the same time complexity as its continuous relaxation. We also investigate the strong rounding property which allows rounding a solution to the continuous relaxation to the next integer solution and in turn yields that the integer version can be solved in the same time complexity as its continuous relaxation for arbitrary dimensions.

Keywords: Level set approach; Nonlinear integer optimization; Continuous relaxation (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221714000988
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:237:y:2014:i:2:p:404-410

DOI: 10.1016/j.ejor.2014.01.059

Access Statistics for this article

European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati

More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:ejores:v:237:y:2014:i:2:p:404-410