EconPapers    
Economics at your fingertips  
 

Reverse logistics network design and planning utilizing conditional value at risk

Hamed Soleimani and Kannan Govindan

European Journal of Operational Research, 2014, vol. 237, issue 2, 487-497

Abstract: Nowadays, due to some social, legal, and economical reasons, dealing with reverse supply chain is an unavoidable issue in many industries. Besides, regarding real-world volatile parameters, lead us to use stochastic optimization techniques. In location–allocation type of problems (such as the presented design and planning one), two-stage stochastic optimization techniques are the most appropriate and popular approaches. Nevertheless, traditional two-stage stochastic programming is risk neutral, which considers the expectation of random variables in its objective function. In this paper, a risk-averse two-stage stochastic programming approach is considered in order to design and planning a reverse supply chain network. We specify the conditional value at risk (CVaR) as a risk evaluator, which is a linear, convex, and mathematically well-behaved type of risk measure. We first consider return amounts and prices of second products as two stochastic parameters. Then, the optimum point is achieved in a two-stage stochastic structure regarding a mean-risk (mean-CVaR) objective function. Appropriate numerical examples are designed, and solved in order to compare the classical versus the proposed approach. We comprehensively discuss about the effectiveness of incorporating a risk measure in a two-stage stochastic model. The results prove the capabilities and acceptability of the developed risk-averse approach and the affects of risk parameters in the model behavior.

Keywords: Conditional value at risk; Design and planning; End of life products; Reverse supply chain; Two-stage stochastic programming (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (34)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221714001635
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:237:y:2014:i:2:p:487-497

DOI: 10.1016/j.ejor.2014.02.030

Access Statistics for this article

European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati

More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:ejores:v:237:y:2014:i:2:p:487-497