Pricing to accelerate demand learning in dynamic assortment planning for perishable products
Masoud Talebian,
Natashia Boland and
Martin Savelsbergh
European Journal of Operational Research, 2014, vol. 237, issue 2, 555-565
Abstract:
Retailers, from fashion stores to grocery stores, have to decide what range of products to offer, i.e., their product assortment. Frequent introduction of new products, a recent business trend, makes predicting demand more difficult, which in turn complicates assortment planning. We propose and study a stochastic dynamic programming model for simultaneously making assortment and pricing decisions which incorporates demand learning using Bayesian updates. We show analytically that it is profitable for the retailer to use price reductions early in the sales season to accelerate demand learning. A computational study demonstrates the benefits of such a policy and provides managerial insights that may help improve a retailer’s profitability.
Keywords: Assortment planning; Demand learning; Bayesian updating; Stochastic dynamic programming; Retailing (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221714000666
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:237:y:2014:i:2:p:555-565
DOI: 10.1016/j.ejor.2014.01.045
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().