Interior analysis of the green product mix solution
John F. Wellington,
Alfred L. Guiffrida and
Stephen A. Lewis
European Journal of Operational Research, 2014, vol. 237, issue 3, 966-974
Abstract:
When modeling optimal product mix under emission restrictions produces a solution with unacceptable level of profit, analyst is moved to investigate the cause(s). Interior analysis (IA) is proposed for this purpose. With IA, analyst can investigate the impact of accommodating emission controls in step-by-step one-at-a-time manner and in doing so track how profit and other important features of product mix degrade and to which emission control enforcements its diminution may be attributed. In this way, analyst can assist manager in identifying implementation strategies. Although IA is presented within context of a linear programming formulation of the green product mix problem, its methodology may be applied to other modeling frameworks. Quantity dependent penalty rates and transformations of emissions to forms with or without economic value are included in the modeling and illustrations of IA.
Keywords: Linear programming; Product mix problem; Implementation strategy; Sustainability; 0/1 Mixed integer programming (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221714001623
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:237:y:2014:i:3:p:966-974
DOI: 10.1016/j.ejor.2014.02.029
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().