An automated planning engine for biopharmaceutical production
Robert C. Leachman,
Lenrick Johnston,
Shan Li and
Zuo-Jun Shen
European Journal of Operational Research, 2014, vol. 238, issue 1, 327-338
Abstract:
We introduce an optimization-based production planning tool for the biotechnology industry. The industry’s planning problem is unusually challenging because the entire production process is regulated by multiple external agencies – such as the US Food and Drug Administration – representing countries where the biopharmaceutical is to be sold. The model is structured to precisely capture the constraints imposed by current and projected regulatory approvals of processes and facilities, as well as capturing the outcomes of quality testing and processing options, facility capacities and initial status of work-in-process. The result is a supply chain “Planning Engine” that generates capacity-feasible batch processing schedules for each production facility within the biomanufacturing supply chain and an availability schedule for finished product against a known set of demands and regulations. Developing the formulation based on distinct time grids tailored for each facility, planning problems with more than 27,000 boolean variables, more than 130,000 linear variables and more than 80,000 constraints are automatically formulated and solved within a few hours. The Planning Engine’s development and implementation at Bayer Healthcare’s Berkeley, CA manufacturing site is described.
Keywords: Biopharmaceutical production (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221714002161
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:238:y:2014:i:1:p:327-338
DOI: 10.1016/j.ejor.2014.03.002
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().